Galvanic-Cell-Reaction-Driven Deposition of Large-Area Au Nanourchin Arrays for Surface-Enhanced Raman Scattering
نویسندگان
چکیده
منابع مشابه
Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays.
Raman signal enhancements in excess of 10(7) can be achieved at near-infrared wavelengths when mid-nanometer sized gold particles self-organize into close-packed planar arrays. These substrates generate stable surface-enhanced Raman scattering which changes dramatically as a function of periodic structure and excitation wavelength.
متن کاملAu nanorod arrays tailored for surface-enhanced Raman spectroscopy.
We have demonstrated surface-enhanced Raman spectroscopy (SERS) on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For light polarized along the major axes of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. Raman scattering on the discrete nanorods is significantly enhanced compared with that ...
متن کاملFabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy.
This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-sh...
متن کاملSurface-enhanced Raman scattering
We present an introduction to surface-enhanced Raman scattering (SERS) which reviews the basic experimental facts and the essential features of the mechanisms which have been proposed to account for the observations. We then review very recent fundamental developments which include: SERS from single particles and single molecules; SERS from fractal clusters and surfaces; and new insights into t...
متن کاملSurface-enhanced Raman scattering
© 2007 American Institute of Physics, S-0031-9228-0711-020-6 When light interacts with matter, it can scatter inelastically from vibrational quantum states. During that process, photons may lose energy to, or gain it from, vibrational excitations. A change in the photon energy must produce a concomitant shift in the frequency of the scattered light (see box 1). The phenomenon, called the Raman ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2018
ISSN: 2079-4991
DOI: 10.3390/nano8040265